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A B S T R A C T

Cisplatin or (SP-4-2)-diamminedichloridoplatinum(II) is one of the most potential and widely used drugs for the
treatment of various solid cancers such as testicular, ovarian, head and neck, bladder, lung, cervical cancer,
melanoma, lymphomas and several others. Cisplatin exerts anticancer activity via multiple mechanisms but its
most acceptable mechanism involves generation of DNA lesions by interacting with purine bases on DNA fol-
lowed by activation of several signal transduction pathways which finally lead to apoptosis. However, side
effects and drug resistance are the two inherent challenges of cisplatin which limit its application and effec-
tiveness. Reduction of drug accumulation inside cancer cells, inactivation of drug by reacting with glutathione
and metallothioneins and faster repairing of DNA lesions are responsible for cisplatin resistance. To minimize
cisplatin side effects and resistance, combination therapies are used and have proven more effective to defect
cancers. This article highlights a systematic description on cisplatin which includes a brief history, synthesis,
action mechanism, resistance, uses, side effects and modulation of side effects. It also briefly describes devel-
opment of platinum drugs from very small cisplatin complex to very large next generation nanocarriers con-
jugated platinum complexes.

1. Introduction

Cancer is one of the most important health problems in the world
and second cause of death in the United States. In 2018, 1,735,350 new
cancer cases and 609,640 cancer deaths are projected to occur in the
United States [1]. Cancer is defined as the uncontrolled growth of ab-
normal cells anywhere in the body. It is accepted that cancer can de-
velop when normal mechanism of body stops working. Old cells do not
die and instead grow out of control, forming new abnormal cells. These
extra cells may form a mass of tissue, called tumor [2]. According to
World Health Organization (WHO), cancer may arise due to interaction
between a person's genetic factors and 3 categories of external agents,
including physical carcinogens (ultraviolet and ionizing radiation),
chemical carcinogens (asbestos, components of tobacco smoke, afla-
toxin, and arsenic) and biological carcinogens (infections from certain
viruses, bacteria, or parasites) [274,275]. Depending on the type and
stage of cancer, patients are treated with either traditional therapies
(such as surgery, chemotherapy, and radiation therapy) or newer forms
of treatment (such as immunotherapy [276], targeted therapy [277],
hormone therapy [278], gene therapy [279] and photodynamic therapy
[280]. Surgery is the process of removing cancer by doing operation
and it is generally used only when cancer is localized [281]. Radiation
therapy uses high doses of radiation to shrink or kill cancer cells [282].
On the other hand, chemotherapy is an effective and widespread way of

cancer treatment in which one or more chemotherapeutic or alkylating
agents are used [3–5].

Cisplatin is one of the best and first metal-based chemotherapeutic
drugs (see Fig. 1 for 3D structure of cisplatin) [10,287]. It is reported
that ∼2 billion U.S. dollars of platinum-based anticancer drugs are sold
worldwide [6,7] and nearly about 50% of all patients are treated with
cisplatin [8]. Cisplatin was discovered in 1845 by Michele Peyrone but
its biological property was hidden until 1965 when a biophysicist, Dr.
Barnett Rosenberg [9] discovered its inhibiting cell division property. It
is used for wide range of solid cancers such as testicular, ovarian,
bladder, lung, cervical, head and neck cancer, gastric cancer and some
other cancers [11,12,285]. Studies confirmed that cisplatin exerts its
anticancer activity by attacking more than one place [14]. It generally
binds with genomic DNA (gDNA) or mitochondrial DNA (mtDNA) to
create DNA lesions, block the production of DNA, mRNA and proteins,
arrest DNA replication, activate several transduction pathways which
finally led to necrosis or apoptosis [13,15,40,283,286]. However, cis-
platin does not show its highest potential because of side effects and
drug resistance. Resistance to cisplatin depends on multiple factors such
as reduced drug accumulation, inactivation of drug by binding with
different proteins, increase of DNA repairing, alteration of different
proteins that signal to apoptosis [16,40,288,289]. The major toxicities
arise from cisplatin therapy are nephrotoxicity, ototoxicity, hepato-
toxicity, gastrointestinal, neurotoxicity [12,17,290,291]. Furthermore,
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relapsing is also a very important drawback of cisplatin [18,284]. The
clinical limitations of cisplatin motivate researcher to create thousands
of cisplatin analogs [34,189]. But only two (carboplatin and ox-
aliplatin) have been approved worldwide and a few have entered in
clinical trials [19]. But most of the platinum compounds do not show
substantial advantage over cisplatin [20].

This article is divided in two parts. In the first part, a complete
overview of cisplatin is sketched which includes a brief history of cis-
platin, synthesis and clinical applications of cisplatin. Special attention
is paid to mechanism of action and drug resistance. Next part of this
article, development of different nonclassical platinum drugs such as
trans Pt(II) compounds, monofunctional Pt(II) compounds, polynuclear
Pt(II) compounds and Pt(IV) prodrugs are briefly explored. Different
nanoparticle conjugated Pt(II) and Pt(IV) complexes are also discussed
on this article.

2. Invention of 1st metal based chemotherapeutic agent

The compound cis-[Pt(NH3)2Cl2] was first prepared by Michele
Peyrone in 1845 [21] and hence it was called Peyrone’s salt for a long
time. The structure of Peyrone’s salt was properly deduced by Alfred
Werner in 1893 [22]. But the mysterious property of inhibition of cell
division was accidentally discovered by Barnett Rosenberg [23], a
biophysicist on study of effects on electric field on bacterial growth
where he used platinum as electrode and ammonium chloride as buffer.
During his experiments, he found that the E-coli bacteria kept growing
up to 300 times of their normal size instead of cell division on applying
electric field and when electrical field was cut off, the bacterial cell
again started dividing. Although the primary assumption was that
electrical field was the cause of controlling cell division, but finally he
proved that cell division was blocked by a platinum compound released
from electrode. In 1969 Rosenberg [24] has demonstrated that cisplatin
has the ability to inhibit sarcoma 180 and leukaemia L1210 in mice.
The subsequent tests on the drug have found to be active against wide
variety of animal tumor systems [25]. Results were so good that the
National Cancer Institute (US) and the Wadley Institutes of molecular
medicine started preclinical pharmacology and toxicology tests [26].
Finally, in 1971 National Cancer Institute started trial 1 and within just
7 years in 1978, it was approved by the US Food and Drug Adminis-
tration (FDA) for testicular and ovarian cancer. One year later in 1979
United Kingdom also approved it [27]. Fig. 2 represents the milestones
of cisplatin.

3. Synthesis

3.1. Synthesis of cisplatin

The most efficient method for synthesis of cisplatin was given by
Dhara [28] which was published in 1970 entitled as “A rapid method
for the synthesis of cis-[PtCl2(NH3)2]’’. Dhara method (Scheme 1) is a
multistep process in which aqueous K2[PtCl4] is treated with excess KI
in the first step to form K2[PtI4]. Ammonium Hydroxide is added in this
dark brown solution of K2[PtI4] which results in yellow precipitate of
cis-[Pt(NH3)2I2]. It is then collected and dried. To remove iodide li-
gands from the complex of cis-[Pt(NH3)2I2], 2 equivalents of aqueous
solution of AgNO3 is added resulting in formation of soluble [Pt
(NH3)2(H2O)2]2+ and insoluble AgI. The insoluble AgI is then filtered
off and discarded. The filtrate containing [Pt(NH3)2(H2O)2]2+ is then
treated with excess KCl solution to get isomerically pure yellow solid of
cisplatin. Cisplatin can be purified by recrystallization from hot water
containing either 0.1M HCl or 0.9% NaCl [29,30]. The first step i.e.
conversion of K2[PtCl4] into K2[PtI4] is really important because
stronger trans effect of iodide with respect to chloride helps to produce
pure cisplatin [31].

3.2. Synthesis of transplatin

In 1844 Reiset [32,33] first gave a synthetic procedure for trans-
platin and hence it is known as Reiset’s second chloride [34]. The most
common method for synthesis of transplatin in modern days is a two-
step process in which conversion of K2[PtCl4] into [Pt(NH3)4]Cl2 (col-
orless) by treatment of excess ammonia is the 1st step. In the next step,
volume is reduced by evaporation and HCl is added to get precipitation
of the desired product of transplatin. The intermediate [Pt(NH3)3Cl]+ is
charged species and hence soluble but transplatin is neutral species and
hence very less soluble and so it precipitates out from solution. For-
mation of transplatin is possible because of the higher trans effect of
chloride group than ammine group. Higher trans effect of chloride li-
gand makes more labile to ammine group which is trans in position
with respect to it. So the second chloride replaces at trans position
leading to transplatin. Scheme 2 represents the synthetic method of
transplatin.

3.3. Separation of cisplatin and transplatin

The Soviet chemist Nikolai Semenovich Kurnakov [35,36] devel-
oped a quick distinguishing method between cisplatin and transplatin
in 1894 and hence the method is known as Kurnakov test or Kurnakov’s
reaction (Scheme 3). In this method, aqueous cis/trans-platin is reacted
with excess thiourea on gentle heating so that cisplatin produces deep
yellow water soluble solution of [Pt (Th)4]Cl2 (Th= thiourea) while
transplatin forms white water insoluble trans-[Pt(NH3)2(Th)2]Cl2 and
hence they can be distinguished only by visual identification. The
Kurnakov test is basically a result of trans effect. Thiourea has greater
trans effect as compared to chloride and ammine ligands as thiourea
coordinated through sulfur atom. Therefore for cisplatin when the first
thiourea displaces a chloride ligand, the amine group present trans to it
becomes more labile and hence is displaced by thiourea. Similarly,
when the second chloride is replaced by another thiourea, its trans
ammine group become more labile and hence is displaced by thiourea
so that all four ligands become thiourea to form [Pt(Th)4]Cl2. But for
transplatin, if one chloride replaces to thiourea, the trans position i.e.
the second chloride ligand becomes more labile and hence is displaced
by thiourea so that only two thiourea keep in trans position with respect
to each other to form trans-[Pt(Th)2(NH3)2]Cl2. No other ammine group
present at trans to thiourea and hence remains coordinated to platinum
ion. Kurnakow test in conjugation with HPLC has developed to separate
cis and transplatin and detect trace quantities of transplatin in samples
of cisplatin which can be used in clinic [37,38]. Several other

Fig. 1. 3D structure of cisplatin.
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distinguishing methods for cisplatin and transplatin are also known
[39].

4. Action mechanism of cisplatin:

The detail molecular mechanism of cisplatin anticancer activity
goes beyond this review and remains elsewhere [14,40,41,42]. Here a
brief overview of mechanism of cisplatin activity is explained.

Cisplatin is administered intravenously to the patients as a sterile
saline solution [43]. In the bloodstream the concentration of chloride is
relatively high (approximately 100mM) and hence cisplatin remains
unchanged and neutral [31,44]. This unchanged cisplatin keeps flowing
over the whole body through bloodstream. The plasma proteins al-
bumin, transferring, cysteine etc. can bind strongly with cisplatin re-
sulting in deactivation of large amount of applied cisplatin [31,45]. It is
reported that 65–95% of cisplatin may bind with blood plasma protein
just within 24 h of administration [46].

The remaining cisplatin can transport to tumor cells by passive

diffusion through plasma membrane [31,44,47]. Modern studies reveal
that copper transporter protein CTR1 is also responsible for cisplatin
uptake [48]. Cisplatin causes degradation of concentration of CRT1,
resulting in lower cisplatin accumulation by the cancer cells. Cells with
higher CTR1 expression can have higher accumulation of cisplatin
which makes higher sensitivity to cisplatin [12].

Once cisplatin enters into the cell it becomes activated by replacing
one of the chloride ligands into water ligand (i.e. monoaquation of
cisplatin does take place). This mono and/or diaquation of cisplatin
occur because concentration of chloride in cytoplasm is relatively low
(approximately 4–20mM) and they are potent electrophile. They can
react with a number of nucleophiles like sulfhydryl groups of protein
and nitrogen donor atoms of nucleic acids etc [12] because water is
better leaving group than chloride [49]. In vitro studies have confirmed
that monoaquated platinum is more reactive than diaquated platinum
towards DNA binding [50]. DNA binding properties of cisplatin are
discussed in the next part of this article.

Oxidative stress is a very common mechanism in cisplatin

Fig. 2. Milestones of cisplatin.

Scheme 1. Synthetic Scheme of cisplatin (Dhara method).

Scheme 2. Synthetic scheme of transplatin.
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cytotoxicity. Cisplatin induces oxidative stress by forming reactive
oxygen species (ROS) like hydroxyl radicals, superoxide which depends
on the concentration of cisplatin and time of exposure [51]. ROS is
thought to be responsible for peroxidation of lipid, depletion of

sulfhydryl groups, changed different signal transduction pathways, Ca-
homolysis etc. which can cause DNA damage and consequently apop-
tosis of cells [14]. The mitochondrion is one of the most important
targets of oxidative stress and ROS may affect on mitochondrial

Scheme 3. Schemetic representation of kurnakow test.

Fig. 3. Action mechanism of cisplatin anticancer activity.
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respiratory function and cause cellular dysfunction [52]. ROS together
with Bax (Bcl2 associated X) and Ca2+ cause mtDNA damage and fall in
MPT (Mitochondrial permeability transition) [53] which facilitate
rupture of mitochondria [54]. The rupture of mitochondria releases Cyt
C (cytochrome C) and procaspase-9 (caspase is cysteine aspartate-spe-
cific proteinase) that bind with cytosolic Apaf-1 (apoptotic protease
activating factor 1) and ATP (adenosine triphosphate) to form an
apoptosome complex which activates caspase-9 [42]. The activated
caspase-9 is then interacted with other caspases to activate caspase-3,
caspase-6 and caspase-7 which lead to apoptosis through cleavage of
key substrates (see Fig. 3) [55]. Apoptosis is ATP dependent “pro-
grammed cell death” or “cell suicide” [56].

Cisplatin may also induce cell apoptosis from cell membrane [57].
The type II transmembrane protein and Fas ligand (FasL) activate Fas
receptor which is then facilitates to form apoptosome complex from
FADD (Fas-associated death domain) and procaspade-8 [49]. This
apoptosome complex activates caspase-8 which subsequently activates
caspase-3, caspase-6 and caspase-7 that finally cleaves key substrate
and leads to cell apoptosis (see Fig. 3).

The main target of cisplatin is genomic DNA (gDNA) but a very little
amount (∼1%) of intercellular cisplatin is generally bound to gDNA
[58]. Several proteins like HMG (high mobility group) proteins can
easily recognize cisplatin-DNA bindings. HMG1 protein selectively re-
cognizes 1,2-cisplatin-DNA adduct, binds with them [59] and is able to
shield and protect from repairing [60]. Three different pathways can be
followed by cisplatin-DNA-HMG1 complex. The first path is to flow NER
(nucleotide excision repair) mechanism to get repair of DNA and cell
survives. The second path is “repair shielding model” in which it is
postulated that HMG protein could protect cisplatin-DNA adducts from
recognition by DNA repair enzymes [42]. The third one, “hijacking
model” establishes that HMG proteins such as SSRP1 could be able to
modulate cell cycle events after DNA damage and trigger cell death (see
Fig. 3) [42,61].

The DNA repairing mechanism is one of the most important parts of
cisplatin cytotoxicity. The proteins related to DNA repairing are NER
and MMR (mismatch repair). The NER system contains 17 different
proteins which recognizes Pt-DNA intrastrand crosslinks and then ex-
cises DNA sequences up to 20–29 base pairs [62]. DNA polymerase fills
the remaining gaps [63]. The MMR would try to input correct nucleo-
tide on the nondamaged strand opposite to the intrastrand adduct be-
tween two adjacent guanines [44,64]. When it failed to repair the da-
mages, apoptosis of the cell occurs (see Fig. 3).

Cell apoptosis is also possible through cell cycle arrest (G1, S and G2
phase) caused by cisplatin [65]. These arrests allow time for repairing
of damaged DNA before DNA synthesis. Cisplatin activates checkpoint
kinases Chk1 and Chk2 which are responsible for G and S phase arrest
[66]. Abrogating these arrests may cause killing the cancer cells by
forcing them to reenter the cell cycle prematurely in the face of un-
repaired DNA damage [67] which facilitates cell apoptosis through NER
pathway (see Fig. 3).

The tumor suppressor protein p53 is a short lived protein which
plays a central role in cisplatin induced apoptosis. It is also known as
“guardian of genome” due to its role in conserving stability by pre-
venting genome mutation [68]. p53 is activated by two different ki-
nases ATM (ataxia telangiectasia mutated protein) and ATR (ATM and
RAD3-related protein). Cisplatin first activates ATR kinase [69] which
then activates p53 by phosphorylating at serine-15 [70]. p53 activates
p21, Mdm2 and GADD45 genes which are responsible for cell cycle
arrest and lead to apoptosis through DNA repair pathway [44]. p53
causes apoptosis directly by different mechanisms like: Degradation of
FLIP (flice-like inhibitory protein), direct binding and counteracting the
antiapoptotic function of Bcl-xL (B-cell lymphoma-extra-large), over
expression of PTEN (phosphatase and tensin homolog) [12,71]. Again
p53 actives PUMA [72], PIDD [73] and MAPK protein family [12]
which are responsible for cell apoptosis. It is possible to enter mi-
tochondrial path though activating Bax (present in cytosol) to gain
apoptosis [74]. It is also reported that p53 facilitates Fas/FasL which
lead to apoptosis through caspase 8, caspase 3 pathway (see Fig. 3)
[51].

5. Cisplatin binds with DNA

DNA is the main target for cisplatin to show anticancer activity
[75,76]. The mono or dihydrated platin entered in nucleus is vulnerable
enough to react with bases of DNA. The potential binding sites on each
bases of DNA are given in the Fig. 4. It is reported for in vitro studies
that the N7 position of the imidazole ring of guanine is more preferable
to attack over adenine or any other bases present in DNA (i.e. cytosine
and thymine) [77,78,79]. Though adenine N7 is less reactive than
guanine N7 but more reactive than any positions of cytosine and thy-
mine. Lippard and his coworkers [79] proved that a strong hydrogen
bond between the hydrogen of the amine on Pt and the oxo group at C6
position of guanine plays a pivotal role in stabilizing the Pt-guanine
adduct by comparison to the Pt-adenine adduct. The computational
study for binding efficiency of Pt(NH3)32+ with different sites of four
bases of DNA follows the order as: G(N7) > C(N3) > C(O2) >
G(O6) > A(N3)≈A(N1) > A(N7) > G(N3) > T(O4) > T(O2)
based on differential Pt(II) binding energies [12]. Different types of
adduct such as monoadducts, intra-stand crosslinks and inter-stand
crosslink can be formed between cisplatin and DNA bases (Fig. 5).
Monofunctional DNA adducts are formed first as only one chloride li-
gand is replaced by a water molecule in the first step. But bifunctional
adducts may be formed either by ring closing of monofunctional ad-
ducts with reacting another DNA base (adenine or guanine) or by re-
placing second chloride ligand and then ring closing [31]. 90–95% of
crosslinks are intrastrand in which 60–65% is for 1,2-d(GpG) and
20–25% is for 1,2-d(ApG) while others [monoadduct∼ 2%, 1,3-d
(GpXpG)= 2% etc.] are less frequently formed [78].

Formation of crosslinks (Both intra and inter) create contortion of

Fig. 4. Schematic representation of different binding sites of bases of DNA with
cisplatin moiety.
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DNA [76]. Bending of DNA double helix toward major groove is seen by
32–35° for three types of intrastrand crosslink adducts and unwinding
for both 1,2-d(ApG) and 1,2-d(GpG) crosslink adducts are 13˚, while for
1,3-d(GpXpG) intrastrand unwinding is 23° [42]. Interstrand crosslink
adducts result in more static changes in DNA [76] and create 20–40°
bending of helix axis toward minor groove and ∼80° of unwinding
[80].

There are still continuous debates on which of the cisplatin-DNA
adducts are most significant toward cell death. But majority accept that
1,2-intrastrand adducts induce cytotoxicity more effectively than 1,3-
intra adducts [12,76,81]. It is also reported that DNA repair enzymes
can remove 1,3-intrastrand adducts from DNA more effectively than
1,2-intrastrand adducts i.e. 1,3-intrastrand adducts are more rapidly
repaired than 1,2-intrastrand adducts [31]. Some high mobility group
(HMG1) proteins can recognize specifically this 1,2-intrastrand pla-
tinum-DNA adducts [81]. The transplatin does not form 1,2-adducts
and that is why they are inactive towards anticancer activity. Though
very high reactivity (like aquation, ammonolysis, reaction with glu-
tathione etc) of transplatin is another reason for inactivation toward
anticancer activity [31]. But some transplatin derivatives are known
which are active toward cancer [82].

6. Resistance of cisplatin

The most serious drawback of cisplatin therapy is its resistance to-
ward cancer cells. Resistance of cisplatin depends on types of cancer.
For example, testicular cancer, ovarian cancer, head and neck cancer
and small cell lung cancer are very sensitive to cisplatin, while non-
small cell lung cancer and colorectal cancer are very resistant to cis-
platin [42,83]. There are two forms of resistance exist: intrinsic re-
sistance and acquired resistance. Intrinsic resistance is the resistance
which occurs from beginning of treatment with drug, while for acquired
resistance drug is initially active but become inactive over time [14].
Cisplatin resistance may be possible by lowering in cellular uptake of
drug, decreasing influx or increasing efflux of drug, drug detoxification
by cellular thiols, altering in drug target and repairing of DNA
[84,85,86].

In this article it is accepted that cisplatin resistance may be occurred
at four different moments: During drug circulation through blood-
stream, during drug influx and efflux through cell membrane, during
present in cytoplasm and finally after DNA binding.

6.1. Resistance during drug circulation through blood stream

Cisplatin is administered intravenously and hence it circulates
through blood before entering cancer cells. The proteins present in

bloodstream can bind with cisplatin, particularly those have thiol group
like human serum albumin and cysteine. This protein binding is re-
sponsible for deactivation of cisplatin [87]. It is mention earlier that
65–95% of cisplatin binds with plasma protein just after one day of
administration [46]. The strong binding nature between soft platinum
and soft sulfur of HSA protein and cysteine can be explained by Hard-
Soft Acid-Base principle [88]. The detail mechanism of cisplatin
binding with GSH remains anywhere else [89].

6.2. Resistance during influx or efflux of drug through cell membrane

Decreased influx and increased efflux of cisplatin cause lower drug
accumulation to the cancer cells [90]. Fuertes et al. [42] mentioned
that the reduced cisplatin accumulation is due to reduced drug uptake
rather than to increased drug efflux. It is known that passive diffusion
and copper transport protein Ctr1 are responsible for cisplatin influx.
Presence of cisplatin causes degradation in concentration of Ctr1 and
therefore cisplatin influx decreases significantly which results re-
sistance to the drug [58]. A membrane protein TMEM205 is also re-
sponsible for cellular resistance to cisplatin [12]. Two other copper
transporter ATP7A and ATP7B help to export cisplatin from cell and
lead to resistance [91]. It is also in literature that multidrug resistance
proteins (MRP) preferably export cisplatin outside the cell by con-
jugation with sulfate, glucuronate or GSH [12,92].

6.3. Resistance during cisplatin present in cytoplasm

One of the most important mechanisms of cisplatin resistance is
intracellular inactivation of cisplatin through binding with glutathione
and metallothioneins. The complex of GSH and cisplatin is then ex-
creted by a GS-conjugated export pump [93]. It is reported that either
glutathione S-transferase enzyme (GST) helps this reaction or it spon-
taneously occurs [94].

6.4. Resistance after cisplatin-DNA binding

NER is the best way to remove DNA lesions to induce resistance of
cisplatin [95]. NER system excises damaged nucleotides on both strands
and then synthesizes DNA to reconstitute integrity of gene [96]. Cells
with over expression with NER denote very lower sensitive to cisplatin
[97]. MMR protein is very important protein which generally attempts
to repair DNA-cisplatin lesion. If it fails to repair then it leads to
apoptosis [64]. But if it repairs DNA perfectly then cell survives. It is
well established that alterations expression of oncogenes like c-fos, H-
ras, c-abl and c-myc and tumor suppressor gene like p53 can create
cellular resistance to cisplatin [86]. Cisplatin resistance is also possible

Fig. 5. DNA adduct formation with cisplatin moiety.
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due to drug induced dysregulation of microRNA function [14]. This
dysregulation of microRNA can causes problems in cell signaling, DNA
methylation and invasiveness or cell survival which result in resistance
of cisplatin [98]. The detail for mechanism of cisplatin resistance re-
mains elsewhere [99].

7. Use of cisplatin for cancer treatment

7.1. Use of cisplatin for treatment of lung cancer

One of the most common fatal malignancies is lung cancer [100].
Two types of lung cancers are generally known in literature: Small cell
lung cancers (SCLC) and non-small cell lung cancers (NSCLC). These
two types of cancer can be differentiated by the way of growing and
spreading. SCLCs are most aggressive and readily growing of all lung
cancers. Chemotherapy is the most effective treatment for SCLC [101]
because these tumors are generally widespread in the body when they
are diagnosed. Cisplatin and carboplatin are two most important drugs
generally used in SCLC chemotherapy [102]. But cisplatin is selected
more preferably than carboplatin because of its strong antitumor ac-
tivity though it has some adverse effect like renal toxicity [103], nausea
and vomiting [104]. For treatment of non-small cell lung cancers,
surgery is used at stage I and stage II to remove tumors and after that
chemotherapy is used which is known as ‘adjuvant chemotherapy’. For
the people with stage III and stage IV lung cancer that cannot be re-
moved surgically, chemotherapy is most effective along with radiation
therapy [105].

7.2. Use of cisplatin for treatment of ovarian cancer

Ovarian cancer or cancer of the ovaries is one of most common types
of cancer in woman and ovarian cancer has the highest death among
the gynecologic cancers. Though exact cause behind ovarian cancer is
unknown but it can be seen that it may arise from hereditary back-
ground and or who has breast or colon cancer [106]. It is very difficult
to detect ovarian cancer at an early stage due to lack of effective
screening strategies and specific symptoms associated with early-stage
disease [12]. Surgery is the main treatment for most ovarian cancers
and in the next step systemic chemotherapeutic treatment is given to
the patient to kill very small amounts of cancer cells that may still be
around after surgery [12]. Despite of several side effects, cisplatin is
used as the most effective chemotherapeutic agent for ovarian cancer
treatment. One of the most important drawbacks of cisplatin therapy in
ovarian cancer is that even after successful treatment, there is a high
chance that the cancer will come back within next few years and its
resistance power to chemotherapy increases significantly. To avoid this
problem combination therapy is used in which cisplatin is used along
with one other chemical agents like honey venom [107], trichostatin A
or 5-aza-2′-deoxycytidine [108], aferin [109].

7.3. Use of cisplatin for treatment of testicular cancer

Seminoma and non-seminoma are two important types of testicular
cancer seen among young men. Seminomas are seen to occur in all age
groups and tend to grow and spread more slowly than non-seminomas.
Cisplatin-based regimens are the key to the treatment of seminomas.
85% of patients with advanced seminoma show cure with three or four
cycles of cisplatin based therapy [110] while for single agent carbo-
platin this rate falls to 59% [111]. Non-seminomas are generally seen in
men in between late teen and early 30 s and are mainly four subtypes
such as embryonal carcinoma, yolk sac carcinoma, choriocarcinoma
and teratoma. For the patients of teratoma, combination therapy with
bleomycin, etoposide and cisplatin is the most efficient way of treat-
ment and cure rate is at least 90% [112]. It is to be noted that the Food
and drug administration (FDA) has approved cisplatin for the treatment
of metastatic ovarian and testicular cancer in 1978 [113]. Though the
actual reason behind the over sensitivity of cisplatin towards testicular
cancer is unknown but several mechanisms are proposed to explain it,
such as: Gong et al. [114] proved that prostate cancer cells over express
Kindlin-2 which regulates cancer cell death, Usanova et al. [115] re-
vealed that cisplatin sensitivity of testis tumour cells is due to defi-
ciency in interstrand-crosslink repair and low ERCC1-XPF expression,
Koster et al. [116] demonstrated that the presence of wild-type p53
protein and high levels of Oct4 and consequently high cellular levels of
proapoptotic Noxa protein and miR-17/106b seed family members and
low cytoplasmic levels of anti-apoptotic p21 protein are important
parameters for the exquisite sensitivity of TC cells to cisplatin. Awuah
et al. [190] proved that high-mobility group box protein 4 (HMGB4), a
protein preferentially expressed in testes, uniquely blocks excision re-
pair of cisplatin-DNA adducts, 1,2-intrastrand cross-links, to potentiate
the sensitivity of TGCTs to cisplatin therapy.

7.4. Use of cisplatin for treatment of other cancers

Cisplatin is not limited for treatment of testicular, ovarian and lung
cancers, it is broadly used for treatment of childhood brain tumors
[117], gastric cancer [118], leukemia [119], anal cancer [120], etc. For
treatment of breast cancer, cisplatin is very beneficent which causes
enhancement of patient’s lifespan [121]. For head and neck squamous
cell carcinoma (HNSCC), cisplatin is not an effective drug but 32 per-
cent of overall responsibility is seen [27]. So it can be concluded that
cisplatin is a shining star among chemotherapeutic agents which can be
used for the treatment of variety of cancers like ovarian, breast, testi-
cular, head and neck, cervical, prostate, bladder, lung and refractory
non-Hodgkin’s lymphomas [122,123]

8. Side effects of cisplatin

Though cisplatin is very successful for the treatment of testicular
and ovarian cancer, it induces a large number of toxic side effects
[124]. These side effects may be seen due to overdose of cisplatin [17].

Table 1
Cisplatin dosages for different types of cancer.

Type of cancer Cisplatin Dosage Input type

Metastatic testicular cancer 20mg/m2 once a day for five days per cycle Intravenously
Metastatic ovarian Cancer (1) 75–100mg/m2 on day 1, every 4 weeks (taken with cyclophosphamide 600mg/m2 day 1, every 4 weeks)

(2) 100mg/m2 per cycle once every 4weeks (As single agent)
Intravenously

Advanced bladder cancer 70mg/m2 on day 2, every 4 weeks (with gemcitabine) Intravenously
Head and Neck cancer 75–100mg/m2 on day 1, every 3–4weeks Intravenously
Oesophageal cancer 75–100mg/m2 on day 1, every 3–4weeks (with fluorouracil) Intravenously
Gastric cancer 60mg/m2 on day 1, every 3 weeks, (with epirubicin, capecitabine) Intravenously
Lung cancer (1) 75–100mg/m2 on day 1, every 3–4weeks (with vinorelbine

(2) 50mg/m2 on days 1 and 8, every 4weeks (with etoposide, radiation therapy)
Intravenously

Hodgkin’s or non-Hodgkin’s lymphoma 75mg/m2 on day 1, every 3 weeks (with dexamethasone, gemcitabine) Intravenously
Osteosarcoma 100mg/m2 on day 1, every 3 weeks (with doxorubicin) Intravenously
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The proper dosages of cisplatin used in different types of cancer are
given in the Table 1. The major side effects of cisplatin are ne-
phrotoxicity, ototoxicity, hepatotoxicity, gastrointestinal toxicity, etc.

8.1. Nephrotoxicity

When a patient is treated with standard-dose of cisplatin in-
travenously, rate of elimination of cisplatin is about 25% within just
24 h and 50% within 5 days in which more than 90% of total excretion
is occurred through renal excretion [125]. So renal excretion is the
principal route of excretion of cisplatin and hence kidney can accu-
mulate greater amount of cisplatin than any other organs which is re-
sponsible for nephrotoxicity. Renal toxicity is seen in 28–36% of pa-
tients when they are treated with cisplatin as a single agent of amount
50mg/m2 [43]. Acute oliguric or non-oliguric renal insufficiency can
be seen within 2 to 6 days after cisplatin overdose while chronic renal
failure may stay for more than 2 years when the patient is treated with
20mg/m2/day of cisplatin for 5 days intravenously every 5 weeks
[125,126]. Nephrotoxicity is seen because of increase in blood urea
nitrogen (BUN) and creatinine, serum uric acid and/or a decrease in
creatinine clearance and imbalanced electrolytes [43,44,127]. Ag-
gressive hydration of at least 3–6 L per day can decrease the risk of
nephrotoxicity by decreasing more reactive monohydrated cisplatin
form [125,128].

8.2. Ototoxicity

Cisplatin induced ototoxicity is seen to 10–90 percent of patients in
which children are affected (22–70%) more than adults [44,129,130].
Generation of excess reactive oxygen species (ROS) in cochlea cells is
responsible for hearing loss [130]. The hearing loss caused by toxic
effect of cisplatin is generally in high frequency range, bilateral and
permanent [127,130]. Several approaches are reported for treatment of
ototoxicity caused by cisplatin among which local or systematic ad-
ministration of antioxidants and anti-inflammatory agents are very
important [131].

8.3. Hepatotoxicity

Cisplatin overdose may cause hepatotoxicity. This is mainly caused
by oxidative stress [44,132] formed by elevation of transaminases and
bilirubin in circulation [133]. Glutathione and glutathione reductase
levels are decreased significantly whereas glutathione peroxidase, cat-
alase and gamma-glutamyl transpeptidase show significant increase
after cisplatin therapy [14]. It is also reported that cisplatin treatment
can enhance the cytochrome P450 level [14] and cytochrome-P450-2E1
enzyme (a member of cytochrome P450) is also responsible for liver
injury [134]. Use of high doses of selenium and vitamin E can reduce
the effect of hepatotoxicity [135].

8.4. Gastrointestinal toxicities

Marked nausea and vomiting is generally occurred in almost all
patients despite routine prophylactic antiemetic use [125]. This may
start within 1–4 h after treatment and last up to 24 h [43]. Delayed
nausea and vomiting which begins or persists more than 24 h after
administration of cisplatin is also seen with high-dose cisplatin use
[136] and last up to 2 weeks. Diarrhea [43,125], lost of taste or metallic
taste [137], pancreatitis [125,137,138] and mucositis [125] are also
reported. Gastrointestinal toxicities may become worst when combi-
nation therapies of cisplatin with other antineoplastic agents are used
[125].

8.5. Other toxicities

Other cisplatin induced toxicities such as cardiotoxicity, renal and

electrolyte disturbances, neurotoxicity, myelosuppression, hematolo-
gical toxicity, vascular toxicities, hyperuricemia, ocular toxicity etc. are
also known [12,43,125,139].

9. Modulation of cisplatin toxicity due to overdose

There are several strategies such as aggressive intravenous hydra-
tion, administration of sodium thiosulfate, antiemetic agents, etc. are
reported to modulate toxicities of cisplatin [140]. No specific antidote
is discovered for cisplatin till date.

9.1. Modulation of nausea and vomiting

Aggressive antiemetics are generally used to control nausea and
vomiting caused by cisplatin [141]. Several reports confirm combina-
tion of serotonin 5-HT3 receptor antagonist, dexamethasone and lor-
azepam is more effective than metoclopramide, dexamethasone and
lorazepam [142,143,144]. Nurokinin-1 receptor antagonist aprepitant
or fosaprepitant are also very useful [140].

9.2. Modulation of nephrotoxicity

Intravenous administration of large amount of water (3–6 L per day)
or isotonic saline is the main option to reduce nephrotoxicity [145].
Addition of osmotic diuretic mannitol is also needed to increase urine
output [146]. Excretion of Cisplatin occurs through urine to reduce
nephrotoxicity [147]. Sodium thiosulfate is also used which binds
strongly with free platinum(II) complex, inactivates it and then excretes
through urine to show less nephrotoxicity [125]. It is reported that
plasmapheresis is a promising method to reduce nephrotoxicity by
binding of cisplatin with plasma proteins which results fall in blood
platinum concentration [125]. It is also well established that ROS is
responsible for cisplatin induced renal tubular injury [148]. So use of
antioxidants such as selenium and vitamin E [149], Dimethylthiourea
(DMTU) [148,150], ebselen and allopurinol [151], amifostine [152],
etc. or natural source of antioxidant [148] are known to control cis-
platin induced nephrotoxicity.

9.3. Modulation of neurotoxicity

Several reports confirm that glutathione may reduce cisplatin in-
duce neurotoxicity without altering anticancer activity [153,154]. Si-
milarly, thiol containing compound BNP7787 is also known to prevent
neurotoxicity caused by cisplatin [154]. Vitamin E acts as neuropro-
tector against cisplatin induced neurotoxicity [155,156]. ORG 2766
was initially thought to have ability to reduce cisplatin induce neuro-
toxicity but it does not prevent neurotoxicity [154].

Some other compounds such as ditiocarb sodium, acetylcysteine,
fosfomucin and colestipol are also used to reduce different cytotoxicity
induced by cisplatin [125].

10. Combination therapy

Though cisplatin is very successful for some cancer treatment, a
numerous problems like resistance to chemotherapy, low prognosis,
drug relapse, large number of side effects, etc. are seen to the patients
treated with cisplatin. To overcome these problems combination
therapies are used sometimes. Combination therapy is a therapy where
two or more drugs with different mechanism of actions are used. A list
of different combination therapies with cisplatin is given on Table 2.

Combination of cisplatin with UFT (mixture of tegafur and uracil
with 1:4 ratio) is much efficient for treatment of advanced non-small
cell lung cancer with respect to single cisplatin or single UFT therapy
[157]. Cisplatin and doxorubicin combination therapy is well tolerable
and effective for diffuse malignant pleural mesothelioma (DMPM)
[158]. Good results are seen for treatment of carcinomas of advanced
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salivary gland origin, when combination therapy of cyclophosphamide,
doxorubicin and cisplatin is applied [159]. For biliary cancer patients
combination of cisplatin and gemcitabine is a good option [160]. Cis-
platin along with different natural compounds are also known. A few
examples are: cisplatin plus honey bee venom for ovarian cancer [107],
cisplatin plus osthole for lung cancer cell lines [161], cisplatin, bleo-
mycin and methotrexate for advanced squamous cell carcinoma of the
male genital tract [162], cisplatin plus anvirzel for breast, colon,
prostate, lung, pancreatic cancer cell lines and melanoma [163].
Combination therapy with everolimus and cisplatin has an important
role in urothelial bladder cancer treatment [164]. Combination of cis-
platin, doxorubicin, fluorouracil and cyclophosphamide is an appro-
priate option for advanced or recurrent salivary gland carcinoma [165].
It is reported that cisplatin along with metformin increase cytotoxicity
suppressing Stat3 activity independently of the LKB1-AMPK pathway
[166]. Nessa et al. [167] reported that combination of cisplatin and
oxaliplatin with quercetin and thymoquinone is the best combination
for human ovarian cancer. Tetraarsenic oxide combine with cisplatin
induce apoptotic synergism by increasing calcium signaling and this
combination therapy is used for treatment of cervical cancer [168,169].
Vindesine is a chemotherapeutic drug but combination of cisplatin and
vindesine is more efficient for non-small cell lung cancer treatment than
vindesine as single agent [170]. Photoactivated chemotherapy (PACT)
is a growing area of interest in modern days [171,172,173,191] as it
prevents damaging of healthy cells and platinum-diazido complexes are
good example of PACT [174]. Combination of cisplatin and radio-
therapy is also important treatment for different types of cancers [175].
Other possible combinations are listed elsewhere [12].

11. Some approved and under trial cisplatin analog drugs

Although cisplatin is a worldwide used chemotherapeutic drug but
toxic side effects and drug resistance are two very important drawbacks
of cisplatin. These drawbacks drive researchers to find out new cisplatin
analogue drugs which may reduce side effects and resistance and which
may improve efficiency towards anticancer activity. A large number of
new cisplatin analogue drugs are designed based on “structure-activity
relationship” but only carboplatin and oxaliplatin are approved and
only a few entered in clinical trial [49].

Carboplatin has lower toxic profile and fewer side effects than cis-
platin and hence can be administrated higher amount [176] and get
better effects. The lower cytotoxic effect of carboplatin is due cyclo-
butanedicarboxylate which is a bad leaving group resulting in slower
reaction. But the problems with the carboplatin are that it is active in
the same range of tumor as cisplatin and it is administered in-
travenously and it is cross-resistant with cisplatin [49,176].

Oxaliplatin can overcome the resistance of cisplatin and it is used
for colon cancer treatment. So France, United Kingdom and European

countries have approved oxaliplatin for colon cancer in 1996 [31].
Oxaliplatin contains dicarboxylate instead of chloride as leaving group
and 1,2-diamminocyclohexane instead of ammonia as carrier ligand.
The carrier ligand 1,2-diamminocyclohexane increases the lipophilicity
which results in higher penetration of the drug through cell membrane.
Greater cellular uptaking property, and different conformation of DNA
adduct formation are responsible for circumventing cisplatin resistance
[177]. Very recently, Bruno et al. [192] demonstrated that oxaliplatin
kills cancer cells cancer cells with different mechanism from that of
cisplatin. Oxaliplatin creates fewer cross-links per base than cisplatin,
yet remains its cytotoxicity. They suggested that oxaliplatin kills cells
by inducing ribosome biogenesis stress. Oxaliplatin is neurotoxic and
effective on limited types of cancer. So search continues to get more
efficient cisplatin analogue anticancer drugs.

Nedaplatin i.e. Diammine[hydroxyacetato(2-)-O,Ó]platinum(II) has
better anticancer activity than carboplatin but equal to the cisplatin
[178]. But it is 10 times more soluble in water than cisplatin and less
nephrotoxic and gastrointestinal toxic than cisplatin [179]. Nedaplatin
is approved by Japan in 1995 for treatment of NSCLC, SCLC, oeso-
phageal cancer, head and neck cancers [180]. A series of combination
therapies with nepadaplatin is running in trials for different cancers
[180]. But nedaplatin is crossresistant with cisplatin and it can cause
thrombocytopenia.

Another Pt(II) complex, heptaplatin is under clinical trial and is
approved by Korea in 1999 for treatment of gastric cancer [180].
Heptaplatin shows greater anticancer activity and lower toxicity than
cisplatin. The extra advantage of heptaplatin is high solubility in water.
Trials studies for different combination therapies with heptaplatin are
known [178].

Lobaplatin has approved in China for treatment of chronic myelo-
genous leukemia (CML) and passed phase II trials in US, EU, Australia
and South Africa for various cancers like breast, ovarian, CML, lung
cancer [180]. It influences the expression c-myc gene, which is involved
in apoptosis, oncogenesis and cell proliferation [181]. Lobaplatin can
reduce renal, neuro and ototoxicity but it causes anemia, leucopenia,
nausea and vomiting.

Cis-[PtCl2(NH3)(2-methylpyridine)] is also a cisplatin analogue
drug which has entered in clinical trials in 1997 [31]. It has different
names like picoplatin, AMD473, JM473 and ZD0473. The 2-methyl-
pyridine ring tilts nearly about 102.7° which place methyl group over
the square plane [176]. So steric hindrance come into play when de-
activating agents like glutathione, methionine, albumin etc. try to react
with it which results in slower reaction and hence lower deactivation of
the drug and therefore it gets better effect on cancer treatment.

Pt(IV) complexes are also known which show anticancer activity
[182] among which iproplatin, tetraplatin and satraplatin enter in
clinical trials. Pt(IV) complexes are acted as prodrug and they need to
reduce to Pt(II) by intracellular or extracellular reducing agents to show

Table 2
Example of different combination therapies.

Composition Type of cancer Source

Cisplatin+UFT Advanced non-small cell lung cancer 157
Cisplatin+Doxorubicin Diffuse malignant pleural mesothelioma (DMPM) 158
Cisplatin+Cyclophosphamide+Doxorubicin Advanced salivary gland origin 159
Cisplatin+Gemcitabine Biliary cancer 160
Cisplatin+Honey bee venom Ovarian cancer 107
Cisplatin+Osthole Lung cancer cell lines 161
Cisplatin+ Bleomycin+Methotrexate Advanced squamous cell carcinoma 162
Cisplatin+Anvirzel Brast, colon, prostate, lung, pancreatic cancer cell lines and melanoma 163
Cisplatin+ Everolimus Urothelial bladder cancer 164
Cisplatin+Doxorubicin+ Fluorouracil+ cyclophosphamide Salivary gland carcinoma 165
Cisplatin+Oxaliplatin+Quercetin+Thymoquinone Human ovarian cancer 167
Cisplatin+ Tetraarsenic oxide Cervical cancer 168, 169
Cisplatin and Vindesine Non-small cell lung cancer 170
Cisplatin+ Paclitaxel Ovarian cancer, breast cancer, lung cancer, head and neck 12
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anticancer activity. Iproplatin enter in clinical trials because it shows
high solubility, activity towards different cancers and lower toxicity
[183]. But it is less active than cisplatin and hence was abandoned after
phase I and phase II trials. Tetraplatin though entered in clinical trials I,
showed several neurotoxic side effects and hence abandoned [182]. The
first orally active platinum drug, satraplatin is currently under phase II
trials [184]. Fig. 6 contains structures of approved platinum drugs and
some drugs which enter in clinical trial and Table 3 listed approval
country, year and use of approved drugs.

Designing new platinum anticancer drugs is not limited to small Pt
(II) or Pt(IV) complexes. Several multi nuclear platinum complexes are
also reported [185,186]. In recent days lipids, nanoparticles are used as
a part of platinum drug to improve selectivity and drug delivery
[187,188,189].

12. Development of platinum based anticancer drugs

Detail study about development of platinum based anticancer drugs
goes beyond this article and remains elsewhere [34,189,194,269]. A
brief overview is described here.

12.1. First, second and third generation platinum drugs

Cisplatin is considered as first generation platinum based anticancer
drug as it’s anticancer property was discovered first. The second and
third generation platinum drugs are similar to the cisplatin but leaving

groups or ammine groups are different. Second generation drugs are
formed only by varying either leaving groups or ammine groups. But for
third generation platinum drugs, both leaving groups and ammine
groups are different. Carboplatin and nedaplatin (see Fig. 6 for struc-
tures) are very important examples of second generation platinum
drugs. The examples of third generation platinum drugs are oxaliplatin,
lobaplatin, heptaplatin (see Fig. 6 for structures), etc.

12.2. Monofunctional platinum complexes

Those platinum complexes which have only one chloride ligand as
leaving group and hence can bind with DNA through only one co-
ordination site are known as monofunctional platinum complexes
[193]. Monofunctional complexes were considered as inactive toward
anticancer activity for a long time. But Engelhard Industries first de-
monstrated that monofunctional platinum(II) complexes of the form cis-
[Pt(NH3)2(Am)Cl]+, where Am is an aromatic N-heterocyclic amine,
has the ability to inhibit tumor cell growth in vitro and in L1210 and
P388 mouse leukemia models [195].These complexes bind with DNA
with a different mechanism. It is accepted that a platinum moiety would
be covalently linked to a nucleobase and an intercalator would ad-
ditionally interact with DNA forming stable and structurally different
adducts than cisplatin [194]. The advantage of this type of binding is
that HMG protein can recognize this type of adducts very less efficiently
[196]. A large number of monofunctional platinum complexes are
known but only phenanthriplatin has greater in vitro cytotoxicity than

Fig. 6. Some approved and trial platinum anticancer drugs.

Table 3
Clinically approved Pt(II)-anticancer drugs.

Drug Year of approval Country approved Type of cancer treated

Cisplatin 1978 Worldwide Testicular, Ovarian, Bladder, Melanoma, NSCLC, Lymphomas, Myelomas cancer
Carboplatin 1989 Worldwide Ovarian, Retinoblastomas, Neuroblastomas, Nephroblastomas Brain tumor, Head and neck, Cervix, Testis, Breast, Lung,

Bladder cancer
Nedaplatin 1995 Japan NSCLC, SCLC, Oesophageal cancer, Head and neck cancers
Oxaliplatin 1996 Worldwide Colon cancer
Heptaplatin 1999 Korea Advanced gastric cancer
Lobaplatin 2010 China CML, SCLC, Inoperable metastatic breast cancer
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that of cisplatin across a broad range of cancer cell types [189,193,197]
(see Fig. 7 for some structures of monofunctional complexes).

12.3. Trans-platinum(II) complexes

The trans-platinum(II) complexes were also considered as inactive
due to inability of forming 1,2-intrastrand adduct with DNA. But in the
last 30 years, several research group synthesized large number of trans-
platinum(II) complexes which are showing efficiency toward anticancer
activity [82,189,194,198]. According to Johnstone et al. [189] active
trans-platinum complexes are three types: (i) trans-Pt(II) complexes
with heteroaromatic ligands, (ii) trans-Pt(II) complexes with iminoether
ligands, and (iii) trans-Pt(II) complexes with asymmetric aliphatic
amine ligands. A few well established examples of trans-platinum(II)

complexes are: trans-[PtCl2(py)2], trans-[PtCl2(NH3)(quin)], trans
[PtCl2(NH)3tz], trans-[PtCl2(E-iminoether)2], trans-[PtCl2(ipa)(dma)],
etc (see Fig. 7 for structures). Trans-platinum complexes bind with DNA
with different mechanism which cannot be either recognized by HMG
proteins or repaired by NER system [204]. The detail advantages of
these complexes are given elsewhere [194,204].

12.4. Polynuclear platinum(II) complexes

Polynuclear Pt(II) complexes having trans-{Pt(NH3)2Cl} units brid-
ging with alkanediamine linkers of variable length, are active toward
cancer [199]. BBR3464 (see Fig. 7 for structure) is one of the best
polynuclear Pt(II) which enters in clinical trial and active toward
GFX214 and MKN45 gastric carcinoma in mice [194]. Tumor cells can

Fig. 7. Some different types of platinum based anticancer agents.
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uptake higher amount of this compound and it can platinate DNA to
higher extent than cisplatin. Summa et al. [200] proved that the tri-
nuclear complex forms long-range delocalized intra- and interstrand
cross-links between guanines spanning up to six base pairs which re-
sults in more flexibility and less distortion. Triplatin-NC (see Fig. 7 for
structure) is another multinuclear Pt(II) complex which avoids deacti-
vation by intrecellular nucleophiles and shows better antitumor activity
[201]. The detail of polynuclear Pt(II) complexes are discussed some-
where else [202,203].

12.5. Platinum(IV) prodrugs

Development of six coordinated Pt(IV) prodrugs as a potential an-
ticancer agents is an attractive and active field in chemistry
[189,205–210]. Pt(IV) prodrugs are stable and substitution inert which
inhibit to react with plasma proteins in blood [189]. Before DNA
binding, Pt(IV) prodrugs are generally reduced by glutathione and as-
corbate to form square planar active Pt(II) drugs [211,212]. The ad-
vantages of each types of ligands present on Pt(IV) prodrug are shown
in Fig. 8. The most important point is that axial groups can used for
increasing solubility, lipophilicity, targeting cancer cells or activating
different biological properties [34]. The axial groups can also conjugate
with nanoparticles or other carrier systems for cargo delivery of the Pt
(IV) prodrugs [189,213,248,269]. Tetraplatin, iproplatin and sa-
traplatin are very important examples of Pt(IV) prodrugs (see Fig. 6 for
structures). A few Pt(IV) prodrugs are highlighted below.

12.5.1. Platinum(IV) complexes with bioactive ligands
There are several examples of Pt(IV) complexes with axial biological

active groups in literature [206]. Here some very important examples
are discussed. Pt(IV) complex with two phenylbutyrate (PhB) as axial
ligands (see Fig. 7 for structure), shows up to 100 times more effective
than cisplatin in many human cancer cells [214]. Pt(IV) conjugated
with valproic acid (VPA) in two axial positions (see Fig. 7 for structure)
binds to DNA to a higher extent than that of cisplatin. This is because
VPA is a potent histone deacetylase inhibitor which decondenses
chromatin and increases the accessibility of DNA within chromatin for
DNA binding agents [194,215]. It is well established that pretreatment
with estrogen increases the expression level of HMGB1 in estrogen-re-
ceptor positive, ER(+), MCF breast cancer cell resulting in increase the
sensitivity of cisplatin [216]. Therefore Pt(IV) with axial estradiol li-
gands (see Fig. 7 for structure) shows higher response rate compare to
cisplatin toward ER(+) breast cancer cell [217]. Another very im-
portant Pt(IV) prodrug entered in clinical trials is mitaplatin consisting
two dichloroacetate (DCA) in the axial positions (see Fig. 7 for struc-
ture). Mitochondrial membrane potential of cancer cells is altered by
DCA released from reduction of mitaplatin. As a result, the Cyt C is
released and apoptosis inducing factor is translocated to nucleus [218].

Ethacrapltin (see Fig. 7 for structure) on reduction produces cisplatin
and ethacrynic acid which inhibits glutathione S-transferase (GST)
[273]. As a consequence platinum drug reacts with GSH with a very low
rate and hence drug resistance decreases significantly.

12.5.2. Nanomaterial conjugated platinum(IV) complexes
Nanoscale drug delivery is the use of nanoparticles to transport

pharmaceutically active drugs. The main goals of nanodrug delivery are
(a) more specific drug targeting and delivery, (b) reduction in toxicity
while maintaining therapeutic effects, (c) greater safety and bio-
compatibility [219]. A large number of nanoparticles with dimension
50–200 nm (for example: carbon based nanomaterials, gold nano-
particles, coordination polymers, metal-organic-frameworks, polymeric
micelles, etc.) are generally used as nanodelivery of platinum(IV) an-
ticancer drugs [189,220–223,259]. These nanoparticles are generally
absorbed by the cancer cells with the help of enhanced permeability
and retention (EPR) effect [224–226]. One of the most important points
about nanodelivery is that if the surface of the nanoparticle is decorated
with a ligand for a receptor expressed selectively on the surface of the
cancer cells, then the particle is more likely to be taken up by those cells
via receptor-mediated endocytosis [189,227].

12.5.2.1. Carbon-based nanomaterials. Carbon nanomaterials such as
single-walled carbon nanotubes (SWCNTs), multi-walled carbon
nanotubes (MWCNTs), carbon nanoparticles are very important which
act as drug delivery vehicles of platinum(IV) anticancer drugs
[228,229]. An early example of SWCNT tethered Pt(IV) drug is
cis,cis,trans-[Pt(NH3)2Cl2(OEt)(O2CCH2CH2COOH)] tethered through
amine-PEG-phospholipid (see Fig. 9A) to the SWCNT and each
SWCNT can able to conjugate with 65 platinum(IV) prodrugs
[189,230]. For the compound cis,cis,trans-[Pt(NH3)2Cl2(O2CCH2

CH2CO2H)(O2CCH2CH2CONH-PEG-folic acid)], the one axial
succinate group can able to attach with amine-functionalised SWCNT
and other axial succinate group is conjugated with PEG spacer and folic
acid [231]. Folic acid helps to target folate receptor which is over-
expressed in some cancer cells (ovarian, breast, lung, kidney and colon
cancer cells) and PEG spacer helps to soluble and biocompatible of the
nanotube [189,231]. On the other hand, diameter of MWCNT is higher
than that of SWCNT and hence hydrophobic cisplatin prodrug
cis,cis,trans-[Pt(NH3)2Cl2(O2CC6H5)2] can be loaded to the internal
cavities of MWCNT by nanoextraction over a period of several days (see
Fig. 9B) [189,232]. On reduction of the prodrug by internal reducing
agent such as ascorbic acid or glutathione, the hydrophobic parts
remove and resulting cisplatin release. Another very important example
of Pt(IV)-carbon nanomaterial is photoactive cis,trans,cis-[Pt
(N3)2(OH)2(NH3)(3-NH2Py)] conjugated to carboxylate-functionalized
carbon nanoparticle and folic acid was attached to this carbon
nanoparticle through ethylenediamine linker (see Fig. 9C) [189,233].
Recently nanosized graphene oxide is also used for cargo delivery of Pt
(IV) anticancer drugs [234,235].

12.5.2.2. Gold nanoparticles. Gold nanoparticles are generally
nontoxic, biocompatible, inert and easily modified and hence they are
promising and attracting for drug delivery vehicles of platinum
anticancer drugs [236,237]. The main advantages of using gold
nanoparticles are the ability to image and diagnose diseases sites,
increase platinum uptake, selectivity of drug targeting, reduction of
glutathione mediated detoxification, capacity of sensitizing the cells to
anticancer drugs and resistance to enzymatic degradation [238]. It was
proved that gold nanoparticles generally enter into cells through
endocytosis [237,239]. Lippard and his coworkers [240] first showed
the study of Pt(IV) complex cis,cis,trans-[Pt(NH3)2Cl2(OH)
(O2CCH2CH2COOH)] tethered with gold nanoparticles via thiolated
oligonucleotide linker (see Fig. 9D). This nanoparticle binding drug Pt
(IV)-DNA-Au was more effective than free state on lung cancer cells
A549, human osteosarcoma U2OS cells and almost 12-fold more

Fig. 8. Advantages of ligands in Pt(IV) prodrug. Ref. [34] Copyright ©2014 The
American Chemical Society.
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cytotoxic than free state on A549 lung cancer cells. Kumar et al. [241]
synthesized glutathione-stabilized gold nanoparticles
(Au@GSH+CRGDK) to target prostate cancer cells. The thiol
functional gold nanoparticles were conjugated to cis,cis,trans-[Pt
(NH3)2Cl2(O2CCH2CH2COOH)2] and CendR peptide ligand Cys-Arg-
Gly-Asp-Lys (CRGDK) which is a neuropilin-1 receptor targeting
peptide. Gold nanorods are also used for platinum(IV) drug delivery.
Yangzhong Liu and his coworkers [242] demonstrated that PEGylated
nonorods conjugated with cis,cis,trans-[Pt(NH3)2Cl2(O2CCH2

CH2COOH)2] (see Fig. 9F) showed superior cytotoxicity towards
cervical cancer HeLa, human lung carcinoma A549 and human breast
adenocarcinoma MCF-7 cell lines.

12.5.2.3. Other inorganic nanoparticles. Some other inorganic
nanomaterials such as Fe3O4 nanoparticles [243,244] rare earth
element based upconversion nanoparticles [245,246], silica
nanoparticles [272] are used as platinum drug delivery system.
Among these Fe3O4 nanoparticles are very attracting due to their
exclusive characteristics of magnetic field mediated targeting and
magnetic resonance for diagnostic and therapeutic application [238].
Very recently Ping’an Ma et al. [244] showed a programmed strategy of
delivering cisplatin(IV) prodrug by use of iron oxide nanocarriers that
can preferentially increase the Pt and Fe accumulation in the tumor site
via magnetic-field mediated-localization and monitoring by MRI-
guided delivery. Dai et al. [245] reported a system of
trans,trans,trans-[Pt(N3)2(NH3)(py)(O2CCH2CH2CO2H)2] conjugated

Fig. 9. Some examples of Pt(IV) prodrug nanodelivery systems.
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with core–shell upconversion nanoparticles in which core was made by
NaYF4 doped with ytterbium(III), thulium(III) and shell was made by
NaGdF4 doped with ytterbium(III). This Pt(IV) conjugated core–shell
upconversion nanoparticles released Platinum drug at 980 nm light
radiation and showed toxicity in cancer cells. Similarly, Ruggiero et al.
[247] synthesized thulium(III) doped NaYF4:Yb(III) nanoparticles
conjugated with cis,cis,trans-[Pt(NH3)2Cl2(O2CCH2CH2CO2H)2]
through phospholipid-functionalized PEG chain. This system released
Pt(II) compound on irradiation with 980 nm light. CdSe-ZnS quantum
dot and layered doubled hydroxide nanoparticles are also known in
literature which can act as platinum drug delivery vehicles [189]. More
detail about inorganic nanocarrier of Pt(IV) remain elsewhere [238].

12.5.2.4. Polymer and polymeric micelles nanomaterials. Polymeric
micelles are also very important for delivering of platinum anticancer
drugs [98]. Polymeric micelles are aggregates of block copolymers
featuring core-shell architecture [222]. The polymer poly(lactic-co-
glycolic acid)-block-poly(ethylene glycol) or PLGA-b-PEG has been used
frequently for platinum drug delivery [248] in which PEG is
hydrophilic, PLGA is hydrophobic, biocompatible and biodegradable.
Lippard et al. [249,250] synthesized a novel Pt(IV) prodrug delivery
system in which cis,cis,trans-[Pt(NH3)2Cl2(O2CCH2CH2CH2CH2CH2)2]
was encapsulated within PLGA-b-PEG-COOH nanoparticles and theses
nanoparticles were then functionalized with aptamers (Apt) that
targeted to prostate-specific membrane antigen (see Fig. 9E). The
group demonstrated that Pt(IV)-PLGA-b-PEG-Apt-NP was more
cytotoxic than cisplatin on LNCaP prostate cancer cells [250]. His
group also demonstrated that similar system of Pt(IV)-PLGA-b-PEG
functionalized with cyclic pentapeptide c(RGDfk) was able to target
breast prostate cancer cells [251].

Xiao et al. [252] demonstrated that cisplatin or oxaliplatin reacted
with guanosine monophosphate or B-cell lymphoma 2 (BCL-2) siRNA to
form Pt-guanosine adduct very rapidly but Pt(IV) analogues [OxaPt(IV)
or CisPt(IV)] did not form Pt-siRNA adduct. However self assembled
micelles from methoxy-poly(ethylene glycol)-block-poly(ε-capro-
lactone)-block-poly(L-lysine) (mPEG-b-PCL-b-PLL) were able to con-
jugate covalently with OxaPt(IV) and electrostatically with siRNA.
Therefore concentration of BCL-2 mRNA decreased and hence in vitro
antiproliferative activity increased significantly for corresponding Pt(II)
agents.

Cong et al. [271] reported a novel system where axial groups of Pt
(IV) prodrug were demethylcantharidin (DMC) and this prodrug was
then polymerized with ethylenediamine into dual sensitive dual drug
backboned shattering polymer (DDBSP) that self assembled into nano-
particles (DD-NPs). The system has two advantages: (a) DMC is a protein
phosphate 2A (PP2A) inhibitor and hence the system showed en-
hancement in antitumor activity, (b) DD-NP with extremely high pla-
tinum heavy metal content in the polymer chain can directly track the
drug itself via platinum based drug-mediated computer tomography
and ICP-MS both in vitro and in vivo.

12.5.2.5. Other nanomaterials. Many other platinum drug carrier such
as liposomes [253,254], lipid particles [255], dendrimer [256,257],
etc. are also known.

12.6. Nanodelivery of Pt(II) anticancer drug

Considerable research attention has been paid to nanodelivery of Pt
(II) drugs [258,259]. A few examples are given here. Wheate et al.
[260] developed a system where Pt(II) anticancer drug oxaliplatin was
chelated to gold nanoparticles that were functionalized with thiolated
PEG monolayer capped with a carboxylate group (see Fig. 10A). Each of
these gold nanoparticles was able to contain ∼280 drugs molecules and
showed better toxicity on HCT116, HCT15, HT29 and RKO cell lines.
Wheate et al. [261] also developed the similar system with cisplatin and
which showed enhancement of drug loading, with the number of

platinums per nanoparticle ranging from 700 to 70000.
Guo et al. [262] synthesized super magnetic iron oxide nano-

particles coated with carboxymethylcellulose and this carboxylate end
was then chelated with cisplatin (see Fig. 10B). In comparison with
cisplatin, the conjugate can more readily enter cancer cells and exert
higher cytotoxicity towards the human cervical cancer HeLa cells and
the human hepatocarcinoma HepG2 cells. Sun et al. [263,264] syn-
thesized a novel system where cisplatin was loaded in the cavities of the
porous hollow iron oxide nanoparticles. Release of drug from these
nanoparticles depended on the size of the cavities and pH value of the
medium. When these nanoparticles were conjugated to herceptin, the
conjugated drug was very selective and effective toward Her-2 positive
breast cancer. Travnick et al. [265] reported maghemite/gold nano-
particles covered with lipoic acid for efficient transport of cisplatin.

Another very important example is lipoplatin (see Fig. 10D). In this
110 nm nanoparticle, aqueous core loaded cisplatin was bound by li-
posomal vesicle. This liposomal vesicle is composed of soy phosphatidyl
choline (SPC-3), cholesterol, dipalmitoyl phosphatidyl glycerol (DPPG),
and methoxy-polyethylene glycoldistearoyl phosphatidylethanolamine
(mPEG 2000-DSPE) [266]. Lipoplatin has successfully entered in phase
I, phase II and phase III clinical trials [267]. Boulikas et al. demon-
strated that the accumulation of lipoplatin was up to 200-fold higher in
colon tumor compared to normal tissue [268]. The clinical data con-
firmed that the lipoplatin shows similar efficiency to that of cisplatin in
pancreatic, head and neck, breast cancers, and NSCLC [266] but shows
lower side effects, lesser resistance [267].

Bhirde et al. [270] synthesized a system where cisplatin and epi-
dermal growth factor (EGF) were conjugated to carboxylate functional
SWNTs (see Fig. 10C). In vitro and in vivo study confirmed that this
system showed more efficient than cisplatin for treatment of head and
neck squamous carcinoma (HNSC) as these cancer cells overexpress
EGF receptor. However one disadvantage of Pt(II) tethered SWNTs is
that they are not stable enough and release prematurely and able to
bind with endogenous nucleophiles [269].

13. Conclusions

Cisplatin is one of the most used anticancer drugs without any doubt
for the treatment of solid cancer such as prostate cancer, ovarian
cancer, head and neck cancer, bladder and lung cancer and some other
cancers. Oversensitivity of cisplatin toward testicular cancer is due to
overexpression of some proteins and low ability of interstrand-crosslink
repairing. It is a cytotoxic drug which causes apoptosis by damaging
DNA, activation of several signal transductions, and then inhibiting
replication and mitosis. Multiple mechanisms of action of cisplatin are
known in literature and each of them has proper evidence but none of
them can explain the actual complete mechanism. Therefore, action
mechanism is a great interest in chemistry, biology and medical science.
A deep knowledge of mechanism in action may lead to design new
drugs with superior efficiency and provide new therapeutic strategies in
cancer treatment. Toxic side effects, drug resisance and relapsing are
the major challenges of cisplatin. Drug resistance is generally seen due
to changes in cellular uptake, decreased influx and increased efflux of
drug, drug detoxification by cellular thiols, alterations in drug target
and repairing of DNA. The side effects such as nephrotoxicity, neuro-
toxicity, gastrointestinal toxicity, ototoxicity are serious concern to the
researcher. Sometime antioxidants, antiemetic agents, aggressive in-
travenous hydration are used to diminish side effects of cisplatin. Again,
drug relapse is also seen most of the time for the patients of small cell
lung cancer. Combinational therapy may be one important way to avoid
these drawbacks. Carboplatin, oxaliplatin, nedaplatin are though less
cytotoxic but they are cross-resistant with cisplatin and they generally
do not show substantial advantage over cisplatin. Among nonclassical
platinum compounds, Pt(IV) prodrugs shows very promising as they are
very kinetically inert and axial groups may be lipophilic that can en-
hance passive uptake, cancer cell targeting agents, subcellular targeting
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agents, bioactive moieties such as drugs, enzyme inhibitors, pathway
activators or suppressors, epigenetic modifiers, antimetabolites etc. and
therefore designing of Pt(IV) prodrugs is another very important way to
improve efficiency of chemotherapeutic drugs in future. Development
of nanoparticle conjugated Pt(IV) drugs will be future crush on re-
searcher as nanoparticles can carry higher no. of Pt(IV) compounds,
target cancer cells by attaching targeting agents, increase solubility by
attaching hydrophilic moieties, increase distribution on tumor sites and
have some other effective advantages. Finally, more research is needed
to improve anticancer activity, reduced toxicity and cross-resistance or
improve pharmacological characteristics as compared with the parent
compound, cisplatin.
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